DSN Progress Report 42-50

January and February 1979

A General Logic Structure for Custom LSI

M. W. Sievers

Communications Systems Research Section

A designer of custom large-scale integrated circuits (LSI) should be primarily con-
cerned with deriving a working chip as rapidly as is practical. Obtaining maximal
usage of area or pushing a technology to its limit is best left for large producers of LSI
who are able to recover the additional required expenditures of time and processing
facilities by volume sales. Custom design may be greatly facilitated by a general tem-
plate into which most circuitry can be built. This template must be both simple to use
and reasonably conservative of area to be practical.

This paper describes a general structure that is being considered as a template candi-
date. Examples of circuits built in NMOS technology are shown. It is hoped this struc-
ture is suitable for building special-purpose devices such as correlators and FFT's as

well as general-purpose controllers.

l. Introduction

This paper describes an integrated circuit structure suitable
for implementing general combinatoric logic functions in cus-
tom LSI. The general logic structure (GLS) is similar to a
programmed logic array (PLA) with additional features that
enhance its flexibility. GLS was motivated by the storage logic
structure described by Patil (Ref. 1).

Now the bad news. It can be expected that the mapping of
an arbitrary logic function into a general structure is less
efficient in use of area and probably slower than an optimized
random logic design. However, in the realm of custom LSI,
these factors may not be significant, especially if they may be
traded for implementation ease and reduced cost. It should
be noted further that this structure may not be suitable for

all possible circuitry. Some elements, most notably memory,
pad drivers, and line receivers with Schmitt trigger inputs are
best built outside of the GLS. The good news is that there are
very few classes of these special circuits.

General structures are also attractive in fault tolerant
designs. This is because once the failure mechanisms have been
established for the structure, this information may be used to
predict the reliability of functions mapped into it and to
suggest design rules to increase fault and test coverage.

Il. GLS Description

An approximation of the logical equivalent of a GLS is
shown in the example of Fig. 1. Each of the m column lines

97

may be formed into up to two NOR gates from two physically
disjoint partitions of the n implicant rows. A gate is created
by connecting pull-down transistors at desired implicant rows
to a column and connecting the column to a pull-up resistor.
The output of the NOR gate may be taken anywhere on the
column segment on which the gate is built. Pull-up resistors
are provided at both ends of each column. This permits a
column to be cut and formed into two independent NOR
gates.

A NOR gate output may be connected to any unused impli-
cant row that it crosses. The connection is made by forming a
contact point at the desired row-column intersection. Forma-
tion of multiple contact points allows transmitting the NOR
output to different locations within the structure. Distribu-
tion of signals is further facilitated by connecting implicant
rows directly to columns. In this way, an implicant carried
at the “top” of the GLS may be brought to an implicant
row at the “bottom.”

Implicant rows may be cut into several segments. Each
segment can be used for transmitting a different implicant.
In this way, for example, an implicant row carrying an input
term may be cut after the last pull-down transistor that uses
it. The segment after the cut can then be reused to transmit
a NOR output.

The example of Fig. 1 illustrates some of the flexibility of
the GLS. Contact points are indicated by a dot and cuts by an
x. NOR gate 1 forms the result A+B+C. The implicant row
carrying input A is cut at Z and a contact point is created at
Y. This connects gate 1 output to the implicant row freed by
cut Z. Gate 1 output is now available as an input to NOR
gate 3. Gate 3 output is connected to an unused implicant
row which in turn is connected at T to a column. Contact W
places the output of gate 3 on an implicant row, which makes
it available to the input of gate 2.

Figure 2 continues the example of Fig. 1. Some of the
abstraction used to depict the GLS in Fig. 1 has been elided
here to more clearly represent its actual implementation. The
implementation shown is based in NMOS technology.

Two types of rows are shown in Fig. 2. One row type
transmits implicant terms and is drawn as a solid line. The
other row type is connected to ground and is drawn as a
dashed line. The reason for the two row types will become
clearer in the discussion of Fig. 3. Columns are drawn as
alternate dot-dashed lines.

Transistors are created at the intersection of a column

and implicant row where the implicant is needed in the NOR
function. Transistor channels provide a switchable path from

98

columns to the ground row. Pull-down transistors are enhance-
ment mode devices. The channels of these transistors conduct
when a positive gate-to-source voltage is present.

Pull-up resistors are implemented by depletion mode
transistors that are shorted from gate to source. In this con-
figuration, the transistor acts like a resistor with an impedance
proportional to its length-to-width ratio.

When an implicant is high, it causes all transistors to which
it is connected to conduct. This forces the corresponding col-
umns to approximately the ground potential. When none of
the implicants associated with a given column is high, the
pull-up resistor brings the column to approximately the posi-
tive supply voltage; a NOR function.

The example of Fig. 1 is revisited one more time in Fig. 3.
Figure 3 illustrates the stick diagram for an NMOS implemen-
tation of Fig. 1. In this figure, polysilicon is represented by a
solid line, diffusion by a dashed line, metal by an alternating
dot-dashed line, and implant by a thickened line.

When polysilicon crosses diffusion, a transistor is formed
in which the polysilicon becomes the gate and diffusion the
channel. This phenomenon is exploited in the GLS in the same
manner as in an NMOS PLA. Polysilicon is used to transmit
all implicant terms across the structure. Transistor channels,
connecting metal columns to grounded diffusion rows are
made to cross polysilicon rows of the implicants needed in
the NOR to be formed. Formation of transistors in this
manner necessitates an interleaving of polysilicon implicant
rows and grounded diffusion rows.

The GLS illustrated in Figs. 1 thru 3 shows only two
pull-up resistors per metal column. This restriction is unneces-
sary as shown in Fig. 4. The technique for providing additional
pull-ups requires that the metal columns be periodically
broken. The resulting gap is spanned by a diffusion cross-
under. This diffusion is crossed by a metal carrying the posi-
tive supply voltage.

Three situations occur as represented by A, B, and C in
Fig. 4. Situation A illustrates the method for providing pull-up
resistors at column breaks. Polysilicon and implant are placed
as shown to form depletion mode transistors. The poly gate is
fed around to the transistor source and a contact point is made
that connects the metal column, poly, and source. The drain
side of the transistor channel is connected to the metal row
carrying the positive supply voltage. Example B illustrates the
formation of a communication path between two column
pieces. The column pieces are connected by creating contact

points to the diffusion cross-under. Finally, example C shows
that disjoint column pieces are made by simply omitting con-
tact points from metal to the cross-under diffusion.

ill. Lower Bound on the Size of an NMOS
GLS Binary Tree

An estimate of the lower bound on the size of a binary
tree implemented in an NMOS GLS may be found with the
aid of the binary NOR tree in Fig. 5. For this discussion,
assume that the tree is complete; i.e., there exists an integer
m such that the number of inputs n, is equal to 2™ This is
the simplest tree that can be formed in the GLS because the
GLS naturally forms NOR gates. Clearly, although any tree
can be mapped into a binary NOR tree, trees with irregular
structure require more space.

The complete n input binary NOR tree in Fig. 5 is formed
from a total of n - 1 NOR gates. Owing to the natural signal
flow in the tree, it is best to build the tree exactly as shown
in Fig. 5. That is, as a series of columns, each column contain-
ing a single level of gates. Since the depth of the tree is log,
n, that many columns are needed. Since the output of any
gate may be placed on one of the implicant rows which drives
the gate, no proliferation of implicant rows occurs. There-
fore, at most, n implicant rows are needed. The tree requires
n -1 gates so the total area occupied by the tree will be (n -1)
(G + P), where G is the area of a gate and P is the area of the
pull-up resistor.

Estimating the size of other trees formed in a GLS may be
done by first determining the equivalent binary NOR tree.
The total number of metal columns needed will be no less than
the base 2 logarithm of the number of inputs; the number of
rows will be no less than number of inputs, and the area will
be at least one less than the number of inputs times the area of
a gate and its pull-up.

IV. Registers

In order for the GLS to be completely general it is neces-
sary to demonstrate that it is feasible and practical to imple-
ment registers in it. One possible register is shown in Figs. 6a
and 6b. Figure 6a shows the logical equivalent of a D flip-flop
built with NOR gates. The storage element in this device is
constructed from cross-coupled NOR gates. When both inputs
of the flip-flop are low, the output remains unchanged. A high
level signal to either input will force the output of the corre-
sponding NOR gate low. Both outputs will go low if both
inputs are high, but the state of the flip-flop is indeterminate
if both inputs go low again simultaneously.

An input gating arrangement enables the data input to the
flip-flop. When the clock is high, the flip-flop output will
remain at its current state. When the clock goes low, the out-
put of the flip-flop follows the input. Data is latched into the
flip-flop when the clock returns to its high state.

An NMOS stock diagram of the register in Fig. 6a is shown
in Fig. 6b. The line convention is the same as in Fig. 3.

This register fulfills the clocking requirements for test-
ability established in Ref. 2. Complete compatibility with
those requirements necessitates that all registers be shift
registers. Placing a multiplexer (see Fig. 7 for an example of
a multiplexer implemented in NOR gates) in front of the flip-
flop is one possible method for building a shift register. The
multiplexer selects data either from a previous register, the
next register, a direct input, or the current data. In this con-
figuration, the register may be continuously clocked. The
multiplexer determines whether a left or right shift, load, or
no operation is to occur on the next clock transition. A stick
diagram of a two cell shift register is shown in Fig. 8.

V. A Few Remarks on Optimality

A completely optimum design belongs in the same class of
mythical creatures as unicorns, tax reform, and honest used
car salesmen. It is possible to speculate on its existence, but
it is impossible to achieve or recognize in any nontrivial situa-
tion. Some comments can be made, however, regarding “best”
use of area when a GLS is compared with a PLA or gate array,
and in “best” selection of architecture when a choice exists.

In a comparison of a PLA and GLS implementation of a
given logical expression, it should be expected that the GLS
will be more dense on the average. In a PLA, the concept of
optimum design is restricted to finding the minimum set of
implicants required to compute a given function. The GLS
permits an added dimension by allowing a number of cut-and-
paste operations that can be used to reclaim some of the area
that would otherwise be lost in PLA designs. There will no
doubt be functions that map as inefficiently into a GLS as a
PLA. It is hoped that these are rarely encountered.

The density of functions mapped into gate arrays will also
generally be less than that achievable with a GLS. This is
because gate arrays are built from fully formed gates. These
gates include additional large output drive transistors for
supplying a specified fanout capability. In the GLS, these
drive transistors are needed only at those outputs that must
drive a large capacitance. The main savings therefore is in the
area occupied by the drive transistors.

99

Choosing which architecture to use for a given function
when a choice exists may be answered in part by timing con-
siderations. For example, consider the two architectures in
Figs. 9a and 9b for a four-bit parity encoder. The circuit in
Fig. 9a is a two-level network, and Fig. 9b is a tree. Intuitively,
it might seem reasonable to expect the circuit in Fig. 9a to
have less delay from input to output than the circuit in
Fig. 9b. This seems reasonable because there are fewer gates
in the signal path of Fig. 9a than Fig. 9b. Unfortunately, this
intuitive estimation is not always correct because the gates in
Fig. 9a are larger and therefore slower than those in Fig. 9b.

Specifically, consider an NMOS GLS implementation of the
circuits in Figs. 9a and 9b. A very crude approximation will
be used to calculate the expected delays through these cir-
cuits. Assume it is possible to lump all capacitance seen by
the drain of a transistor into a single term, which is designated
p This capacitance includes all parasitics due to increased
metal length to accommodate the transistor, diffusion capa-
citance, Miller capacitance, etc. Additionally, assume that each
pull-down transistor has a gate capacitance c,. Define k as
the ratio of pull-up resistor impedance to pull-down transistor
impedance, and 7 as the transit time.

The capacitance and delay for each level in Figs. 9a and 9b
are tabulated below, assuming an initial down transition at
node 1.

9a
Node Capacitapce Delay
1 Sc, te, T(ch + cp)/cg
2 e, e, kT(4Cg + cp)/cg
3 c t 4cp ‘r(cg + 4cp)/cg
4 et 8c'p kr(cg + 8cp)/cg

Total delay assuming an initial down transition at node 1 is:

'r(6cg + 5cp)/cg + kT(ch + 9cp)/cg

Similarly, the delay assuming an initial up transition at
node 1 is:

kT(6Cg + SCP)/Cg +7(5¢ ot 9cp)/cg

100

9b
Node Capacitance Delay

1 2k, te, T(ch + cp)/cg
2 cte, k'r(c‘lr + cp)/c‘
3 c,* 2, 'r(cg + 2cp)/cg
4 2, 2cp 2kT(Cg + cp)/cg
5 c te, 'r(cg + cp)/cg

6 e, t2, k'r(cg + 2cp)/cg
7 . cgt2, m(eg + 2c:p)/cg

- Total delay assuming an initial down transition at node, 1 is:
T(ch + 6cp)/cg + kT(4Cg + 5cp)/cg

The corresponding delay for an initial up transition at node 1
is:

kT(ch + 6cp)/cg + T(4Cg + 5cp)/cg

Assume ¢, is on the order of ¢, and that a typical value for
k is 4. Then an examination of both sets of delays for both

circuits reveals that Fig. 9a is always slower than Fig. 9b.

This is a very crude analysis intended only to show that
the optimum choice of organizations based on delay is not
always obvious. A rigorous analysis using actual layout param-
eters is the only way to accurately predict actual circuit
delays. Performing such an analysis for several potential
structures is only practical if an automated design system is
available.

Another important factor to be considered when selecting
the best architecture is topology. For example, the structure
resulting from Fig. 9a will tend to have longer columns than
Fig. 9b to accommodate the larger gates. However, Fig. 9b
will tend to have longer implicant rows than Fig. 9a to accom-
modate more terms. A designer must decide which architec-
ture best fits into the available area. As is the case for analyz-
ing the timing of candidate architectures, determining dimen-
sions of several structures is greatly facilitated by an auto-
mated design system.

VI. Comments Regarding an Automated
Design System

It is possible to design an automated system for mapping
functions into a GLS. This system is probably best imple-
mented on an interactive color graphics system. In this system,
a user could specify the function to be mapped, design guide-
lines, and analysis to be performed. By viewing the GLS
created by the computer, or the results of ananalysis, the user

could suggest other mapping approaches or request changes
be made.

The program might work by initially creating a copy of a
clean GLS in memory. Cuts and contact points would be over-
layed on this copy. An algorithm similar to printed circuit
layout algorithms would be invoked to do the mapping itera-
tions. The program would stop either when a desired set of
requirements has been met or when no solution has been
found after a time limit has been exceeded.

References

1. Patil, S.S., and Williams, T., ““An Approach to Using VLSI in Digital Systems,” 5th

Symp. Comp. Arch., 1978, pp. 139-143.

2. Eichelberger, E. B., and Williams, T.W., “A Logic Design Structure for LSI Test-
ability,” Proc. 14th Design Automation Conf., June 1977, pp. 462-467.

Bibliography

Mead, C., and Conway, L., Introduction to VLSI Systems (text in preparation), 1978.

Sievers, M. W., “A General Logic Structure for Custom LSI,” Jet Propulsion Labora-
tory IOM 331-78-109a, Oct. 5, 1978 (an internal document).

101

r 1
. \ ~
. l Ju l
T~ Z Y T T |
: \i \"‘ T "*——————-1‘-- ————— -——-————-l——--ﬂ'
F \‘-3
CJ{ L > A ’:JAY {'ji
\ X i rAR _i |
W R LT Tt L A S JE—
TE ot |
E /_?Tr /\, c ::4|
2 . 3 P . .
et ———u
! ! ! | f IW T

Fig. 1. Approximate logical equivalent of a GL.S

ELLLIN

T

o
N
. .1-.-.—*—*—

ES
-__+__~

[} t
+ .+ + +

! t
'll———-l-— - 3————1———4————--—-{“

Fig. 3. NMOS stick diagram of GLS example
]

B A
i

{
3 b
N

A

S E==c L
¥ ' |

+ + + +

Fig. 2. Transistor level description of GLS example Fig. 4. Method for increasing number of pull-up resistors in column

102

a
A J -/
GATE FLIP-FLOP
E—D>— Fig. 6a. Logical equivalent of D flip-flop
+ + + +

| L
: . . g T °
. . . I“—————'-—r‘i‘——-!-—f———l—— -l
. I !
Lol]
IS R
CLOCK ,’-1 ':1 7
RERA b
s e | 1 1
l Lo
DATA + = ; Q
Fig. 5. Binary NOR tree -4 4

Fig. 6b. NMOS stick diagram of D flip-fiop

103

Wl Sk

Fig. 7. Multiplexer implemented in NOR gates

+ o+
[

19202000000t000¢

b

|

- “-"‘TTT"’T‘LT"—
|

i S

l 1

-

LOAD INPUT

]

gty
1 1
—————

+

T

T

P17
“'I"T'I'JT_
I .|

1

1

SHIFT LEFT
INPUT

—_———————

1
1
1

T

T

i

HOLD

R e il e et i Tr——=3T st — i

SHIFT LEFT

SHIFT RIGHT

LOAD

Ca)

e

e

SHIFT RIGHT

1L 63 Y

]
|

| | | N .
I i P LA Y

{
|

LOAD INPUT

L")

P

1

|

l
Fig. 8. Two cell shift register

1

104

f

CauUn <alld Cdla Vi dalVU 0 <o V[0 |€ «lU O |[d]la VA I<lalUIo

A A A A

Fig. 9a. Two-level parity generator

A ’ - B
A
2

{{=]

Fig. 9b. Parity generator tree

105

